Question 1

Q: The joint density of X and Y is f(x, y) = x + y if 0 < x < 1, 0 < y < 1 and zero otherwise. (a) Are X and Y independent? (b)Find the density of X and (c) Find P(X + Y < 1).

A: We find densities first and directly see they are not independent. We have $f(x) = \int_0^1 f(x, y) dy = x + \frac{1}{2}, 0 < x < 1$. Similarly $f(y) = y + \frac{1}{2}$ for 0 < y < 1 and zero else. Since $f(x, y) \neq f(x)f(y)$ in general, we have they are not independent.

To find the probability of X + Y < 1, we integrate the joint density of X and Y under the appropriate region (here triangle : $x+y \le 1$.) Thus $P(X+Y < 1) = \int_0^1 \int_0^{1-y} f(x,y) dx dy = \int_0^1 \frac{(1-y)^2}{2} + y(1-y) dy = \frac{1}{3}$.

Question 2

Q: Let Y and X be independent random variables having respectively exponential distribution with parameter $\lambda > 0$ and uniform distribution over (0, 1). Find the distribution of (a) Z = X + Y (b) Z = X/Y.

A: (a) Let $f_Z(z)$ denote the density of Z. Using the convolution formula, we have

$$f_Z(z) = \int_0^z f_X(t) f_Y(z-t) dt.$$

We note that $f_X(t) = 1$ if $0 \le t \le 1$ and = 0 else. So if z > 1, we have

$$f_Z(z) = \lambda \int_0^1 e^{-\lambda z} e^{\lambda t} dt = e^{-\lambda z} (e^{\lambda} - 1).$$

If $z \leq 1$, we have

$$f_Z(z) = \lambda \int_0^z e^{-\lambda z} e^{\lambda t} dt = (1 - e^{-\lambda z})$$

(b) Conditioning on Y = y gives, $\mathbb{P}(Z \leq z) = \int_0^\infty \mathbb{P}(X \leq yz) f_Y(y) dy$. Differentiating with respect to z gives $f_Z(z) = \int_0^\infty z f_X(zy) f_Y(y) dy = \int_0^{1/z} z \lambda e^{-\lambda y} dy = z(1 - e^{-\lambda/z}).$

Question 3

Q: Choose a number X at random from the set of numbers $\{1, 2, 3, 4, 5\}$. Now choose a number at random from the subset no larger than X.; i.e., from $\{1, 2, ..., X\}$. Call this second number Y. (a) Find the joint mass function of X and Y. (b) Find the conditional mass function of X given that Y = 1. (c) Are X and Y independent?

A: (a) We have $P(X = j, Y = k) = P(Y = k | X = j)P(X = j) = \frac{1}{5j}$. Since given X = j we know Y is uniform in $\{1, 2, ..., j\}$. Here we have $k \leq j$. Thus

$$P(Y=1) = \sum_{j=1}^{5} \frac{1}{5j} = c.$$
 (1)

(b) We use Bayes formula to get $P(X = j | Y = 1) = P(Y = 1 | X = j) \frac{P(X = j)}{P(Y = 1)} = \frac{1}{5j} \frac{1}{c}$ where c as in (1).

(c) Not independent: $P(X = 1, Y = 1) = \frac{1}{5}$. But $P(X = 1)P(Y = 1) = \frac{c}{5} \neq \frac{1}{5}$.

Question 4

Q: The joint density of X and Y is $f(x, y) = c(x^2 - y^2)e^{-x}, 0 \le x < \infty, -x \le y \le x$. Find the conditional distribution of Y, given X = x.

A: We use the formula $f(y|x) = \frac{f(x,y)}{f(x)}$. Here $f(x) = \int f(x,y)dy = \int_{-x}^{x} c(x^2 - y^2)e^{-x}dx = \frac{2c}{3}x^3e^{-x}, 0 < x < \infty$.

So $f(y|x) = \frac{3}{2x^3}(x^2 - y^2), -x \le y \le x$. So integrating gives for $t \le x$, $P(Y \le t|X = x) = \int_{-x}^{t} f(x, y) dy = \frac{3}{2x^3}(x^2(t+x) - \frac{t^3}{3} + \frac{x^3}{3})$. If t < -x, then $P(Y \le t|X = x) = 0$ and for t > x, $P(Y \le t|X = x) = 1$.

Question 5

Q: Suppose F is a cumulative distribution function (cdf) and $X \sim F(x)$. (a) Verify $G(x) = F^n(x)$, $H(x) = 1 - (1 - F(x))^n$ are also cdfs, n positive integer. (b) Show there are random variables Y and Z such that $Y \sim G$ and $Z \sim H$.

A: (a) Allowing $x \to \infty$, we have $G(\infty) = 1 = H(\infty)$ and similarly $G(-\infty) = 0 = H(-\infty)$. Also G is increasing since F is increasing. Similarly H is also increasing since 1 - F is decreasing. Thus G and F are cdfs.

(b) Let $X_1, ..., X_n$ be iid random variables with cdf F(x). Let $Y = \max_{1 \le i \le n} X_i$ and $Z = \min_{1 \le i \le n} X_i$. We have $P(Y \le x) = P(X_1 \le x, X_2 \le x, ..., X_n \le x) = P(X_1 \le x)^n$. Since if $Y \le x$ then all X_i are less than or equal to x. The second relation is because $X_1, ..., X_n$ are independent.

Similarly if Z > x then each of $X_i > x$ and we have $P(Z > x) = P(X_1 > x)^n$ again using independence. Thus $P(Z \le x) = 1 - (1 - F(x))^n$.

Question 6

Q: Suppose n people are distributed at random along a road L miles long. Let $D \leq \frac{L}{n-1}$. Show that the probability that no two people are less than a distance of D miles apart is, $(1 - (n-1)D/L)^n$. What if D > L/(n-1)?

A: For any fixed person P, let x(P) denote the position of P. We would like the "D-neighbourhood" of each person to be free of any other person (e.g. ball of diameter D centred around each person).

So in particular, the area available for P is (n-1)D out of total area of L. Thus the probability that P falls in the "favourable area" is $1 - \frac{D(n-1)}{L}$. This being true for all n persons each of which is independently distributed, we have the answer. If D > L/(n-1), then D-neighbourhood of P will necessarily intersect the D-neighbourbood of some other person (since there is not enough space for all the remaining (n-1) D-neighbourhoods to be disjoint.) So the probability is zero (note the second part did not need calculation of probability).

Question 7

Q: Let $X_1, ..., X_n$ be iid random variables having distribution function F and density f. The quantity $M = (X_{(1)} + X_{(n)})/2$ defined to be the average of the smallest and the largest value, is called the midrange. Show its distribution is

$$F_M(m) = n \int_{-\infty}^x (F(2m - x) - F(x))^{n-1} f(x) dx.$$

A: Let $F_M(m) = P(M \le m) = P(X_{(n)} + X_{(1)} \le 2m)$. We condition on the event E_j that X_j is the minimum. So we have

$$P(M \le m | E_1) = P(X_{(n)} + X_{(1)} \le 2m | E_1) = \int_{-\infty}^m P(X_{(n)} \le 2m - x | E_1, X_1 = x) f(x) dx.$$

Here we integrate only up to m since minimum always less than or equal to midrange. But if $X_1 = x$ is the minimum, then every other X_i lies between x and 2m - x. Thus, the last integral equals $\int_{-\infty}^{m} (F(2m-x) - F(x))^{n-1} f(x) dx$. Finally, each X_i takes on the minimum value with equal probability. Therefore $P(M \le m) = n \int_{-\infty}^{x} (F(2m-x) - F(x))^{n-1} f(x) dx$.

Question 8

Q: If X and Y are independent standard normal random variables, determine the joint density function of U = X, V = X/Y. Hence show that X/Y has a Cauchy distribution.

A: We use $f_{UV}(u, v) = \frac{f_{XY}(u, u/v)}{|J|}$, where $J = u_x v_y - v_x u_y$ is the Jacobian of the transformation. Here u_x, v_x etc refer to the partial derivatives. Thus $J = -x/y^2 = -v^2/u$, using the relations x = u, y = u/v.

So $f_{UV}(u,v) = \frac{|u|}{2\pi v^2} e^{-\frac{1}{2}u^2(1+v^{-2})}$ and we have $f_V(v) = \int f_{UV}(u,v) du = \int_0^\infty \frac{u}{\pi v^2} e^{-\frac{1}{2}u^2(1+v^{-2})} du$. Using the change of variables $u_1^2 = u^2(1+v^{-2})$, we have

$$f_V(v) = \int_0^\infty \frac{u_1}{\pi(1+v^2)} e^{-u_1^2/2} du_1 = \frac{1}{\pi(1+v^2)} \int_0^\infty e^{-u_1^2/2} d\left(\frac{u_1^2}{2}\right) = \frac{1}{\pi(1+v^2)}.$$